+65 6516 8624 [email protected]

 

 

Publications 

Publications

Research Publications

Yew Lab's Publications
2022
1Structure-guided engineering of prenyltransferase NphB for high-yield and regioselective cannabinoid production
Lim K. J. H., Hartono Y. D., Xue B., Go M. K., Fan H. and Yew, W.S.
ACS Catalysis 12: 4628-4639 (2022)
https://doi.org/10.1021/acscatal.2c00786
2Reconstituting the complete biosynthesis of D-lysergic acid in yeast
Wong G., Lim L. R., Tan Y. Q., Go M. K., Bell D. J., Freemont P. S., andYew, W.S.
Nature Communications 13: 712 (2022)
https://doi.org/10.1038/s41467-022-28386-6
3Recent advances in structure, function, and pharmacology of class A lipid GPCRs: opportunities and challenges for drug discovery
Krishna Deepak R. N. V., Verma R. K., Hartono Y. D., Yew, W.S., and Fan H.
Pharmaceuticals 15(1): 12 (2022)
https://doi.org/10.3390/ph15010012
4Biologically engineered microbes for bioremediation of electronic waste: wayposts, challenges and future directions
Han P., Teo W. Z., and Yew, W.S.
Engineering Biology 6(1): 23-24 (2022)
https://doi.org/10.1049/enb2.12020
2021
5A high-throughput pipeline for scalable kit-free RNA extraction
Han P., Go M. K., Chow J. Y., Xue B., Lim Y. P., Crone M. A., Storch M., Freemont P. S., and Yew, W.S.
Scientific Reports 11: 23260 (2021)
https://doi.org/10.1038/s41598-021-02742-w
6A novel lipase from Lasiodiplodia theobromae efficiently hydrolyses C8-C10 methyl esters for the preparation of medium-chain triglycerides precursors
Ng, A.M.J., Yang, R., Zhang, H., Xue, B., Yew, W.S., and Nguyen, G.J.T.
International Journal of Molecular Sciences 22(19): 10339 (2021)
https://doi.org/10.3390/ijms221910339
7Heterologous expression of cyanobacterial gas vesicle proteins in Saccharomyces cerevisiae
Jung, H., Ling, H., Tan, Y.Q., Chua, N.H., Yew, W.S., and Chang, M.W.

https://doi.org/10.1002/biot.202100059
8Scalable workflow for green manufacturing: discovery of bacterial lipases for biodiesel production
Chow, J.Y., Choo, K.L.S., Lim, Y.P., Ling, L.H., Nguyen, K.T.G., Xue, B., Chua, N.H., and Yew, W.S.
ACS Sustainable Chemistry and Engineering 9 (40): 13450-13459 (2021)
https://doi.org/10.1021/acssuschemeng.1c03721
9Structure of a minimal alpha-carboxysome derived shell and its utility in enzyme stabilization
Tan, Y.Q., Ali, S., Xue, B., Teo, W.Z., Ling, L.H., Go, M.K., Hong, L., Robinson, R.C., Narita, A., and Yew, W.S.
Biomacromolecules 22 (10): 4095-4109 (2021)
https://doi.org/10.1021/acs.biomac.1c00533
10Biosynthesis of Nature-Inspired Unnatural Cannabinoids
Lim, K.J.H., Lim, Y.P., Hartono, Y.D., Go, M.K., Fan, H., and Yew, W.S.
Molecules 26(10): 2914 (2021)
https://doi.org/10.3390/molecules26102914
11The Divergent Immunomodulatory Effects of Short Chain Fatty Acids and Medium Chain Fatty Acids
Sam, Q.H., Ling, H., Yew, W.S., Tan, Z., Ravikumar, S., Chang, M.W., and Chai, L.Y.A.
International Journal of Molecular Sciences 22: 6453 (2021)
https://doi.org/10.3390/ijms22126453
12Genetically encodable scaffolds for optimizing enzyme function
TTan, Y.Q., Xue, B., and Yew, W.S.
Molecules 26(5): 1389 (2021)
https://doi.org/10.3390/molecules26051389
13Future trends in synthetic biology in Asia
Mao, N., Aggarwal, N., Poh, C.L., Cho, B.K., Kondo, A., Liu, C., Yew, W.S. and Chang, M.W.
Advanced Genetics: e10038 (2021)
https://doi.org/10.1002/ggn2.10038
14Novel modalities in DNA data storage
Lim, C.K., Nirantar, S.,Yew, W.S., and Poh, C.L.
Trends in Biotechnology 39(10): 990-1003 (2021)
https://doi.org/10.1016/j.tibtech.2020.12.008
2020
15COVID-19 Endocrinopathy with Hindsight from SARS
Kothandaraman, N.; Anantharaj, R.; Xue, B.; Yew, W.S.; Velan, S.S.; Karnani, N.; Leow, M. K.-S.
Am J Physiol Endocrinol Metab. (2020)
https://journals.physiology.org/doi/full/10.1152/ajpendo.00480.2020
16Development of a Proline-Based Selection System for Reliable Genetic Engineering in Chinese Hamster Ovary Cells
Sun, T.; Kwok, W. C.; Chua, K. J.; Lo, T. M.; Potter, J.; Yew, W.S.; Chesnut, J. D.; Hwang, I. Y.; Chang, M. W. (2020)
ACS Synth Biol. 9 (7), 1864-1872.
https://pubs.acs.org/doi/10.1021/acssynbio.0c00221
17Evolving a Thermostable Terminal Deoxynucleotidyl Transferase
Chua, J.P.S., Go, M.K., Osothprarop, T., McDonald, S., Karabadzhak, A.G., Yew, W.S., Peisajovich, S., and Nirantar, S. (2020)
ACS Synth Biol. 9(7), 1725-1735. June 23. doi: 10.1021/acssynbio.0c00078.
https://pubs.acs.org/doi/10.1021/acssynbio.0c00078
18Directed Computational Evolution of Quorum-Quenching Lactonases from the Amidohydrolase Superfamily.
Go, M.K., Zhao, L.N., Xue, B., Supekar, S., Robinson, R.C., Fan, H., and Yew, W.S. (2020)
Structure 28, 1-8. June 2. doi: 10.1016/j.str.2020.03.011.
https://www.sciencedirect.com/science/article/abs/pii/S0969212620300939
19Toolkit Development for Cyanogenic and Gold Biorecovery Chassis Chromobacterium violaceum
Liow, L.T., Go, M.K., Chang, M.W., and Yew, W.S. (2020)
ACS Synth Biol. 9(4), 953-961. March 11. doi: 10.1021/acssynbio.0c00064.
https://pubs.acs.org/doi/10.1021/acssynbio.0c00064
2019
20Building a Global Alliance of Biofoundries
Hillson, N., et. al. Yew, W.S., Yuan, Y., Zhao, H., and Freemont, P.S. (2019)
Nature Commun. 10(1):2040. doi: 10.1038/s41467-019-10079-2.
https://www.nature.com/articles/s41467-019-10079-2
21Characterization of Constitutive Promoters from the Anderson library in Chromobacterium violaceum ATCC 12472
Liow, L.T., Go, M.K., and Yew, W.S. (2019)
Engineering Biology DOI: 10.1049/enb.2018.5007, Online ISSN 2398-6182.
https://digital-library.theiet.org/content/journals/10.1049/enb.2018.5007
22Characterisation of the Bacterial Biosensor GMG in coli BL21 (DE3).
Rajasabhai, R., Go, M.K., and Yew, W.S. (2019)
Engineering Biology DOI: 10.1049/enb.2018.5006, Online ISSN 2398-6182.
https://digital-library.theiet.org/content/journals/10.1049/enb.2018.5006
2018
23Synthetic Enzymology and the Fountain of Youth: Repurposing Biology for Longevity
Lim, Y.P., Go, M.K., Raida, M., Inoue, T., Wenk, M.R., Keasling, J.D., Chang, M.W., and Yew, W.S. (2018)
ACS Omega 3(9): 11050-11061. doi: 10.1021/acsomega.8b01620.
https://pubs.acs.org/doi/10.1021/acsomega.8b01620
24Mutational Mtc6p attenuates autophagy and improves secretory expression of heterologous proteins in Kluyveromyces marxianus
Liu, Y., Mo, W.J., Shi, T.F., Wang, M.Z., Zhou, J.G., Yu, Y., Yew, W.S., and Lu, H. (2018)
Microb Cell Fact. 17(1):144. doi: 10.1186/s12934-018-0993-9.
https://microbialcellfactories.biomedcentral.com/articles/10.1186/s12934-018-0993-9
25Immunomodulation as Therapy for Fungal Infection: Are We Closer?
Sam, Q.H., Yew, W.S., Seneviratne, C.J., Chang, M.W., and Chai, L.Y.A. (2018)
Front. Microbiol. https://doi.org/10.3389/fmicb.2018.01612.
https://www.frontiersin.org/articles/10.3389/fmicb.2018.01612/full
26Targeted Approaches for In Situ Gut Microbiome Manipulation
Lee, H.L., Shen, H., Hwang, I.Y., Ling, H., Yew, W.S., Lee, Y.S., and Chang, M.W. (2018)
Genes 2;9(7). pii: E351.
https://pubmed.ncbi.nlm.nih.gov/30002345/
27Engineering microbes for targeted strikes against human pathogens
Hwang, I.Y., Lee, H.L., Huang, J.G., Lim, Y.Y., Yew, W.S., Lee, Y.S., and Chang, M.W. (2018)
Cell Mol Life Sci. doi: 10.1007/s00018-018-2827-7.
https://link.springer.com/article/10.1007/s00018-018-2827-7
28Reprogramming Probiotic Lactobacillus reuteri as a Biosensor for Staphylococcus aureus Derived AIP-I Detection
Lubkowicz, D., Ho, C.L., Hwang, I.Y., Yew, W.S., Lee, Y.S., and Chang, M.W. (2018)
ACS Synth Biol. 7(5):1229-1237.
https://pubs.acs.org/doi/10.1021/acssynbio.8b00063
29Directed Evolution of Quorum-Quenching Enzymes: A Method for the Construction of a Directed Evolution Platform and Characterization of a Quorum-Quenching Lactonase from Geobacillus kaustophilus
Go, M.K., Chow, J.Y., and, Yew, W.S. (2018)
Methods Mol Biol. 1673:311-323.
https://experiments.springernature.com/articles/10.1007/978-1-4939-7309-5_24
30Engineered commensal microbes for diet-mediated colorectal-cancer chemoprevention
Ho, C.L., Tan, H.Q., Chua, K.J., Kang, A., Lim, K.H., Ling, K.L., Yew, W.S., Lee, Y.S., Thiery, J.P., and Chang, M.W. (2018)
Nature Biomedical Engineering. 2:27-37.
https://www.nature.com/articles/s41551-017-0181-y
2017
31Engineering a Riboswitch-based Genetic Platform for the Self-directed Evolution of Acid-tolerant Phenotypes
Pham, H.L., Wong, A., Chua, N., Teo, W.S., Yew, W.S., Chang, M.W. (2017)
Nature Commun. 8(1):411
https://www.nature.com/articles/s41467-017-00511-w
2016
32Reprogrammable microbial cell-based therapeutics against antibiotic-resistant bacteria
Hwang, I.Y., Koh, E., Kim, H.R., Yew, W.S., and Chang, M.W. (2016)
Drug Resistance Updates Jul 27:59-71. doi: 10.1016/j.drup.2016.06.002.
https://www.sciencedirect.com/science/article/abs/pii/S1368764616300140
33Exploiting the Biosynthetic Potential of Type III Polyketide Synthases
Lim, Y.P., Go, M.K., and Yew, W.S. (2016)
Molecules Jun 22: 21(6). pii: E806. doi: 10.3390/molecules21060806.
https://www.mdpi.com/1420-3049/21/6/806
34Anti-Virulent Disruption of Pathogenic Biofilms Using Engineered Quorum-Quenching Lactonases
Tay, S.B., Chow, J.Y., Go, M.K., and Yew, W.S. (2016)
Journal of Visualized Experiments Jan1:107. doi: 10.3791/53243.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4780937/
2015
35Synthetic Polyketide Enzymology: Platform for Biosynthesis of Novel Anti-Microbial Polyketides
Go, M.K., Wongsantichon, J., Cheung, V.W.N., Chow, J.Y., Robinson, R.C., and Yew, W.S. (2015)
ACS Catalysis 5(7): 4033–4042.
https://pubs.acs.org/doi/abs/10.1021/acscatal.5b00477
36Engineered strains enhance gold biorecovery from electronic scrap
Natarajan, G., Tay, S.B., Yew, W.S., and Ting, Y.P. (2015)
Minerals Engineering 75, 32-37.
https://www.sciencedirect.com/science/article/abs/pii/S0892687515000035
2014
37Identification of Polyketide Inhibitors Targeting 3-Dehydroquinate Dehydratase in the Shikimate Pathway of Enterococcus faecalis
Cheung, V.W.N., Xue, B., Hernandez-Valladares, M., Go, M.K., Tung, A., Aguda, A.H., Robinson, R.C., and Yew, W.S. (2014)
PLoS One 9(7):e103598.
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0103598
38Loss of Quaternary Structure is Associated with Rapid Sequence Divergence in the OSBS Family
Odokonyero, D., Sakai, A., Patskovsky, Y., Malashkevich, V.N., Fedorov, A.A., Bonanno, J.B., Fedorov, E.V., Toro, R., Agarwal, R., Wang, C., Ozerova, N.D.S., Yew, W.S., Sauder, J.M., Swaminathan, S., Burley, S.K., Almo, S.C., and Glasner, M.E. (2014)
Proc Natl Acad Sci 111, 8535-8540.
https://www.pnas.org/content/111/23/8535
39Glycine Decarboxylase is an Unusual Amino Acid Decarboxylase Involved in Tumorigenesis
Go, M.K., Zhang, W.C., Lim, B., and Yew, W.S. (2014)
Biochemistry 53, 947-956.
https://pubs.acs.org/doi/10.1021/bi4014227
40Disruption of Biofilm Formation by the Human Pathogen Acinetobacter baumannii using Engineered Quorum-quenching Lactonases
Chow, J.Y., Yang, Y., Tay, S.B., Chua, K.L., and Yew, W.S. (2014)
Antimicrob Agents Chemother. 58, 1802-1805.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3957888/
2013
41Development of Quorum-Based Anti-Virulence Therapeutics Targeting Gram-Negative Bacterial Pathogens
Tay, S.B., and Yew, W.S. (2013)
Int J Mol Sci.14, 16570-16599.
https://www.mdpi.com/1422-0067/14/8/16570
42Enhancing gold recovery from electronic waste via lixiviant metabolic engineering in Chromobacterium violaceum
Tay, S.B., Natarajan, G., Rahim, M.N., Tan, H.T., Chung, M.C., Ting, Y.P., and Yew, W.S. (2013)
Sci Rep. 3, 2236
https://www.nature.com/articles/srep02236
43Structural Evidence of a Productive Active Site Architecture for an Evolved Quorum-quenching GKL Lactonase
Xue, B., Chow, J.Y., Baldansuren, A., Yap, L.L., Gan, Y.W., Dikanov, S.A., Robinson, R.C., and Yew, W.S. (2013)
Biochemistry 52, 2359-2370
https://pubs.acs.org/doi/10.1021/bi4000904
2012
44Establishing a Toolkit for Precursor-directed Polyketide Biosynthesis: Exploring Substrate Promiscuities of Acid-CoA Ligases
Go, M.K., Chow, J.Y., Cheung, V.W.N., Lim, Y.P., and Yew, W.S. (2012)
Biochemistry 51, 4568-4579
https://pubs.acs.org/doi/10.1021/bi300425j
2010
45Directed evolution of a thermostable quorum-quenching lactonase from the amidohydrolase superfamily
Chow, J.Y., Xue, B., Lee, K.H., Tung, A., Wu, L., Robinson, R.C., and Yew, W.S. (2010)
J Biol Chem 285, 40911-40920
https://doi.org/10.1074/jbc.M110.177139
46Site-directed mutagenesis on human cystathionine-gamma-lyase reveals insights into the modulation of H2S production
Huang, S., Chua, J.H., Yew, W.S., Sivaraman, J., Moore, P.K., Tan, C.H., and Deng, L.W. (2010)
J Mol Biol. 396, 708-718
https://doi.org/10.1016/j.jmb.2009.11.058
2009
47Directed Evolution of a Quorum-Quenching Lactonase from Mycobacterium avium subsp. paratuberculosis K-10 in the Amidohydrolase Superfamily
Chow, J.Y., Long, W., and Yew, W.S.(2009)
Biochemistry 48, 4344-4353
https://doi.org/10.1021/bi9004045
2007
48Evolution of Enzymatic Activities in the Enolase Superfamily: L-Talarate/Galactarate Dehydratase from Salmonella typhimurium LT2
Yew, W.S., Fedorov, A.A., Fedorov, E.V., Almo, S.C., and Gerlt, J.A. (2007)
Biochemistry 46, 9564-9577
https://doi.org/10.1021/bi7008882
2006
49Evolution of Enzymatic Activities in the Enolase Superfamily: D Tartrate Dehydratase from Bradyrhizobium japonicum
Yew, W.S., Fedorov, A.A., Fedorov, E.V., Wood, B.M., Almo, S.C., and Gerlt, J.A. (2006)
Biochemistry 45, 14598-14608
https://doi.org/10.1021/bi061688g
50Evolution of Enzymatic Activities in the Enolase Superfamily: L-Fuconate Dehydratase from Xanthomonas campestris
Yew, W.S., Fedorov, A.A., Fedorov, E.V., Rakus, J.F., Pierce, R.W., Almo, S.C., and Gerlt, J.A. (2006)
Biochemistry 45, 14582-14597
https://doi.org/10.1021/bi061687o
51Evolution of Enzymatic Activities in the Enolase Superfamily: N-Succinylamino Acid Racemase and a New Pathway for the Irreversible Conversion of D- to L-Amino Acids
Sakai, A., Xiang, D.F., Xu, C., Song, L., Yew, W.S., Raushel, F.M., and Gerlt, J.A. (2006)
Biochemistry 45, 4455-4462
https://doi.org/10.1021/bi060230b
2005
52Evolution of Enzymatic Activities in the Orotidine 5'-Monophosphate Decarboxylase Suprafamily: Structural Basis for Catalytic Promiscuity in Wild-type and Designed Mutants of 3-Keto-L-Gulonate 6-Phosphate Decarboxylase
Wise, E.L., Yew, W.S., Akana, J., Gerlt, J.A., and Rayment, I. (2005)
Biochemistry 44, 1816-1823
https://doi.org/10.1021/bi0478143
53Evolution of Enzymatic Activities in the Orotidine 5'-Monophosphate Decarboxylase Suprafamily: Enhancing the Promiscuous D-Arabino-Hex-3-ulose 6-Phosphate Synthase Reaction Catalyzed by 3-Keto-L-Gulonate 6-Phosphate Decarboxylase
Yew, W.S., Akana, J., Wise, E.L., Rayment, I., and Gerlt, J.A. (2005)
Biochemistry 44, 1807-1815
https://doi.org/10.1021/bi047815v
2004
54Evolution of Enzymatic Activities in the Orotidine 5’ Monophosphate Decarboxylase Suprafamily: Crystallographic Evidence for a Proton Relay System in the Active Site of 3-Keto-L-Gulonate 6 Phosphate Decarboxylase
Wise, E.L., Yew, W.S., Rayment, I., and Gerlt, J.A. (2004)
Biochemistry 43, 6438-6446
https://doi.org/10.1021/bi0497392
55Evolution of Enzymatic Activities in the Orotidine 5’ Monophosphate Decarboxylase Suprafamily: Mechanistic Evidence for a Proton Relay System in the Active Site of 3-Keto-L-Gulonate 6 Phosphate Decarboxylase
Yew, W.S., Wise, E.L., Rayment, I., and Gerlt, J.A. (2004)
Biochemistry 43, 6427-6437
https://doi.org/10.1021/bi049741t
2003
56Structural Evidence for a 1,2-Enediolate Intermediate in the Reaction Catalyzed by 3-Keto-L-Gulonate 6-Phosphate Decarboxylase, a Member of the Orotidine 5'-Monophosphate Decarboxylase Suprafamily
Wise, E.L., Yew, W.S., Gerlt, J.A., and Rayment, I. (2003)
Biochemistry 42, 12133-12142
https://doi.org/10.1021/bi0348819
2002
57Homologous (β/α)8-Barrel Enzymes that Catalyze Unrelated Reactions: Orotidine 5’-Monophosphate Decarboxylase and 3-Keto-L-Gulonate 6-Phosphate Decarboxylase
*Wise, E.L., *Yew, W.S., Babbitt, P.C., Gerlt, J.A., and Rayment, I. (2002)
Biochemistry 41, 3861-3869
https://doi.org/10.1021/bi012174e
* equal authorship.
Highlighted in Editor’s Choice, Science (2002) 295, 1975.
58Utilization of L-Ascorbate by Escherichia coli K-12: Assignments of Function to Products of the yjf-sga and yia-sgb Operons
Yew, W.S., and Gerlt, J.A. (2002)
J Bacteriol 184, 302-306
https://doi.org/10.1128/jb.184.1.302-306.2002
2000
59The Role of Tryptophan Residues in the Hemolytic Activity of Stonustoxin, a Lethal Factor from Stonefish (Synanceja horrida) Venom
Yew, W.S., and Khoo, H.E. (2000)
Biochimie 82, 251-257
https://doi.org/10.1016/S0300-9084(00)00203-0
1999
60Crystallization and Preliminary Crystallographic Study of Stonustoxin, a Protein Lethal Factor Isolated from the Stonefish (Synanceja horrida) Venom
Yew, W.S., Kolatkar, P.R., Kuhn, P., and Khoo, H.E. (1999)
J Struct Biol 128, 216-218
https://doi.org/10.1006/jsbi.1999.4193